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Introduction
Diffusion weighted imaging [5] (DWI) has 

proven to be a viable tool with many scien-
tific and diagnostic applications in the brain 
and the whole body. Analysis typically ma-
kes heavy use of modelling and all these 
models as well as novel diffusion-weighted 
MR sequences need to be rigorously tes-
ted and validated, effectively requiring the 
availability of specific diffusion phantoms 
with known properties. Here we present 
a novel diffusion phantom manufactured 
with high-resolution 3D-printing technolo-
gy that is capable of producing precise, ar-
britarily-oriented structures.

Methods
Two diffusion phantoms were prepared 

using multi-photon lithography (MPL) [4]. 
Femtosecond laser pulses were used to in-
duce localised cross-linking of ethoxyla-
ted trimethylolpropane (ETA) and trimethy-
lolpropane triacrylate (TTA) in a ratio of 
75:25 via multi-photon absorption [8] using 
M2CMK (5 mmol/g) as photoinitiator. Ob-
jects with arbritary, axon like networks of 
channels with high-definition spatial featu-
res down to 100 nm can be constructed 
in this way. Two MPL upscaling techniques 
[1,2] were combined in order to overcome 
constraints in fabrication time and size.
Both phantoms contained 12x12 µm² fib-

re-like channels with 12 µm and 5 µm in 
vertical and horizontal spacing repsecti-
vely. The phantoms comprised 42 966 and 
51 000 channels respectively in different 
channel configurations (see Figure 1). The 
channels were filled with copper(II)sulfa-
te (20 mmol/l) and PBS and the phantoms 
were embedded in 7% porcine gelatine.
MR measurements were acquired at 7T 

(Magnetom Siemens Healthineers, Erlan-
gen, Germany) using a microimaging sys-
tem (gradient strength: 750 mT/m) and a 
39 mm proton NRM volume coil (Rapid Bio-
medical, Wuerzburg, Germany). DWIs were 
acquired using a single shot, diffusion-pre-
pared EPI imaging sequence (CMRR multi-
band sequence [3]). A multi-shell protocol 
with b-values up to 2500 s/mm², 64 diffu-
sion directions and either 322µm or 156µm 
in-plane resolution was employed.
The data were analysed using DSI Studio 

(http://dsi-studio.labsolver.org) using a ge-
neralised q-sampling imaging (GQI) model 
[6] and a deterministic fibre tracking algo-
rithm [7] after correcting for field inhomo-
geneities using FSL’s topup.

Results
The reconstructed fibre tracts, represen-

ting the directions of the channels, of both 
phantoms can be seen in Figure 2 and scan-
ning electron microscope images in Figu-
re 3.

Conclusion
We have successfully created a novel phan-

tom for diffusion MRI by using advanced, 
high-resolution 3D-printing technologies. 
Diffusion is acchieved by creating liquid-fil-
led channels in a 3D-printed surrounding 
in any arbitrary configuration. Here we pre-
sented two simple configurations  with or-
thogonal directions and crossing channels 
respectively. The employed diffusion model 
and tracking algorithm was able to accura-
tely capture both configurations, demons-
trating the phantom’s utility for diffusion 
imaging studies.
Our contribution is the first 3D-printed 

DWI phantom with micrometer resolution 

and channels approaching pysiological si-
zes. Due the phantoms versatility, we envi-
sion it being useful in translating imaging 
methods from basic research to clinical ap-
plications because with the ground-truth 
known, diffusion imaging methods can be 
more reliably tested against.
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a) b)

Figure 1 3D renderings of the phantoms. a) The „slab“ phantom, consisting of three distinct, orthognal re-
gions. b) The crossing-fibres phantom, consisting of alternating layers of orthogonal channels.

a) b)

Figure 2 Estimated diffusion tracts using the generalised q-sampling model and a deterministic fibre tracking 
algorithm. a) Tracts from the „slab“ phantom. The individual slabs can be easily distinguished from the orien-
tation of the fibres. b) Tracts from the crossing-fibres phantom. The estimated fibres cross inside the overlap-
ping region and are cleary orthogonal in the non-overlapping regions.

Figure 3 Scanning electron microscope images of 
sample channels.


